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TL;DR

DRO, a popular method for tasks with subpopulation

shift, is sensitive to outliers. DORO fixes this issue.

Background: Subpopulation Shift

The data domain is divided into several subpopulations

(subdomains) D1, · · · , DK and we are required to train a

model with high performance over each domain.

The problem is often referred to as subpopulation shift

since the underlying data distribution P is not the same as

the test distribution Ptest = P (z|Dk) for some k = 1, · · · , K.

Let the expected risk of model θ over P be R(θ; P ). Instead
of the expected risk, our goal is to minimize the worst-

case risk: Rmax(θ; P ) = maxk=1,··· ,K R(θ; P (z|Dk)).

Domain-Oblivious Setting

We assume that the subdomains D1, · · · , DK and the num-

ber of subdomains K are unknown during training.
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Figure 1. Two applications of subpopulation shift.

Prior Approach:

Distributional Robust Optimization (DRO)

Idea: Construct an uncertainty set U containing all possible

Ptest, and minimize the expected risk over the worst distri-

bution in this set (upper bound of the worst-case risk).

RDRO(θ; P ) = sup
P ′∈U

R(θ; P ′)

Issue: DRO is Sensitive to Outliers

Outliers make DRO’s performance poor and unstable.
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Figure 2. Worst-case accuracy on the COMPAS dataset.

Blue: Standard training (ERM). Green and Orange: DRO

methods. X-axis: Epochs. Y-axis: Accuracy.

Proposed Method: DORO

Huber’sModel: Ptrain = (1−ε)P +εP̃ , where ε is the noise

level and P̃ is an arbitrary outlier distribution.

Equivalently, P ∈ {Q : ∃Q̃ s.t. Ptrain = (1 − ε)Q + εQ̃}.

Idea: Train on the best Q in this set, i.e. minimizing

RDORO(θ; Ptrain) = inf
Q:∃Q̃ s.t. Ptrain=(1−ε)Q+εQ̃

RDRO(θ; Q)
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Figure 3. DORO avoids overfitting to outliers.

Theoretical and Empirical Results

Theoretical Results

Given that the loss function has bounded moments,

1. Let θ̂ be the minimizer of RDORO(θ; Ptrain). Then
RDRO(θ̂; P ) is close to infθ RDRO(θ; P ).

2. Rmax(θ; P ) is upper bounded by max{3RDORO(θ; Ptrain), C}
for some constant C.

Empirical Results

DORO improves the average and worst-case accuracy of

DRO, and makes the accuracy across epochs more stable.

Method Average Worst-case

ERM 95.01 ± 0.38 53.94 ± 2.02
CVaR-DRO 82.83 ± 1.33 66.44 ± 2.34
CVaR-DORO 92.91 ± 0.48 72.17 ± 3.14

Table 1. Accuracy over the CelebA dataset (%)

Method Average Worst-case

ERM 0.73 ± 0.06 8.59 ± 0.90
CVaR-DRO 11.53 ± 1.72 21.47 ± 0.71
CVaR-DORO 4.03 ± 1.57 16.84 ± 0.91

Table 2. Standard deviation of accuracy across epochs (%)
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