TL;DR

DRO, a popular method for tasks with subpopulation shift, is sensitive to outliers. DORO fixes this issue.

Background: Subpopulation Shift

The data domain is divided into several subpopulations (subdomains) $\mathcal{D}_1, \cdots, \mathcal{D}_K$ and we are required to train a model with high performance over each domain.

The problem is often referred to as *subpopulation shift* since the underlying data distribution *P* is not the same as the test distribution $P_{\text{test}} = P(z|\mathcal{D}_k)$ for some $k = 1, \cdots, K$.

Let the expected risk of model θ over *P* be $\mathcal{R}(\theta; P)$. Instead of the expected risk, our goal is to minimize the **worst**case risk: $\mathcal{R}_{\max}(\theta; P) = \max_{k=1,\dots,K} \mathcal{R}(\theta; P(z|D_k)).$

Domain-Oblivious Setting

We assume that the subdomains $\mathcal{D}_1, \dots, \mathcal{D}_K$ and the number of subdomains K are unknown during training.

(a) Algorithmic Fairness (b) Class Imbalance Figure 1. Two applications of subpopulation shift.

DORO: Distributional and Outlier Robust Optimization

Chen Dan^{*} J. Zico Kolter Pradeep Ravikumar Runtian Zhai*

Prior Approach: Distributional Robust Optimization (DRO)

Idea: Construct an *uncertainty set* U containing all possible P_{test} , and minimize the expected risk over the worst distribution in this set (upper bound of the worst-case risk).

 $\mathcal{R}_{DRO}(\theta; P) = \sup_{P' \in U} \mathcal{R}(\theta; P')$

Issue: DRO is Sensitive to Outliers

Outliers make DRO's performance poor and unstable.

Figure 2. Worst-case accuracy on the COMPAS dataset. Blue: Standard training (ERM). Green and Orange: DRO methods. X-axis: Epochs. Y-axis: Accuracy.

Proposed Method: DORO

Huber's Model: $P_{\text{train}} = (1 - \epsilon)P + \epsilon P$, where ϵ is the noise level and \tilde{P} is an arbitrary outlier distribution. Equivalently, $P \in \{Q : \exists \tilde{Q} \text{ s.t. } P_{\text{train}} = (1 - \epsilon)Q + \epsilon \tilde{Q}\}.$ **Idea:** Train on the *best* Q in this set, i.e. minimizing $\mathcal{R}_{DORO}(\theta; P_{\text{train}}) = \inf_{\substack{Q: \exists \tilde{Q} \text{ s.t. } P_{\text{train}} = (1-\epsilon)Q + \epsilon \tilde{Q}}} \mathcal{R}_{DRO}(\theta; Q)$

Figure 3. DORO avoids overfitting to outliers.

Theoretical and Empirical Results

Theoretical Results

Given that the loss function has bounded moments,

- 1. Let $\hat{\theta}$ be the minimizer of $\mathcal{R}_{DORO}(\theta; P_{\text{train}})$. Then $\mathcal{R}_{DRO}(\hat{\theta}; P)$ is close to $\inf_{\theta} \mathcal{R}_{DRO}(\theta; P)$.
- 2. $\mathcal{R}_{\max}(\theta; P)$ is upper bounded by $\max\{3\mathcal{R}_{DORO}(\theta; P_{\text{train}}), C\}$ for some constant C.

Empirical Results

DORO improves the average and worst-case accuracy of DRO, and makes the accuracy across epochs more stable.

Method	Average	Worst-case
ERM	95.01 ± 0.38	53.94 ± 2.02
CVaR-DRO	82.83 ± 1.33	66.44 ± 2.34
CVaR-DORO	92.91 ± 0.48	72.17 ± 3.14
Table 1. Accura	acy over the Cele	bA dataset (%)
Method	Average	Worst-case
Method ERM	Average 0.73 ± 0.06	Worst-case 8.59 ± 0.90
Method ERM CVaR-DRO	Average 0.73 ± 0.06 11.53 ± 1.72	Worst-case 8.59 ± 0.90 21.47 ± 0.71
Method ERM CVaR-DRO CVaR-DORO	Average 0.73 ± 0.06 11.53 ± 1.72 4.03 ± 1.57	Worst-case 8.59 ± 0.90 21.47 ± 0.71 16.84 ± 0.91

Table 2. Standard deviation of accuracy across epochs (%)

rzhai@cmu.edu