MACER: Attack-Free and Scalable Robust Training via Maximizing Certified Radius

Runtian Zhai, Chen Dan, Di He, Huan Zhang

Boqing Gong, Pradeep Ravikumar, Cho-Jui Hsieh & Liwei Wang

A provable, fast and scalable adversarial defense

Provable: Model robustness can be certified

Fast: No expensive attack operation in training

"airliner" (99%)

MACER: MAximizing the CErtified Radius

MACER indirectly maximizes the robust radius

Computing the certified radius via Randomized Smoothing¹

Smoothed classifier g(x)Base classifier f(x) $g(x) = \underset{c}{\operatorname{argmax}} P_{\eta \sim N(0,\sigma^2 I)}(f(x + \eta) = c)$

Randomized Smoothing Theorem: The certified radius of g(x) is

$$\frac{\sigma}{2} \left[\Phi^{-1} \left(P_{\eta \sim N(0,\sigma^2 I)}(f(x+\eta) = y) \right) - \Phi^{-1} (\max_{c \neq y} P_{\eta \sim N(0,\sigma^2 I)}(f(x+\eta) = c)) \right]$$

where Φ is the c.d.f. of the standard

Gaussian distribution

where CR(g; x, y) is the certified radius

Step 2: Differentiable certified radius

We introduce soft randomized smoothing to make the certified radius differentiable

- Original (hard) randomized smoothing: $g(x) = \underset{c}{\operatorname{argmax}} P_{\eta \sim N(0,\sigma^{2}I)}(f(x+\eta) = c)$
- Soft randomized smoothing: $\tilde{g}(x) = \underset{c}{\operatorname{argmax}} \mathbb{E}_{\eta \sim N(0,\sigma^2 I)} z^c(x+\eta)$

Step 3: Numerical stability

Use hinge loss to maintain numerical stability

 $\Phi^{-1}(x)$ has exploding gradients near 0 and 1

Experimental results

Better performance and faster speed than previous work

Dataset	Model	sec/epoch	Epochs	Total hrs	ACR
Cifar-10	Cohen-0.25 (Cohen et al., 2019)	31.4	150	1.31	0.416
	Salman-0.25 (Salman et al., 2019)	1990.1	150	82.92	0.538
	MACER-0.25 (ours)	504.0	440	61.60	0.556
ImageNet	Cohen-0.25 (Cohen et al., 2019)	2154.5	90	53.86	0.470
	Salman-0.25 (Salman et al., 2019)	7723.8	90	193.10	0.528
	MACER-0.25 (ours)	3537.1	120	117.90	0.544

Table 3: Training time and performance of $\sigma = 0.25$ models.

Paper

