Carnegie Nellon University

DORO: Distributional and Outlier Robust Optimization

ICML 2021

Runtian Zhai*, Chen Dan*, Zico Kolter, Pradeep Ravikumar

Contents

1. Background

- 2. DRO is Sensitive to Outliers
- 3. DORO and Theoretical Analysis

4. Experiments

Distributional Shift

- Subpopulations $\mathcal{D}_1, \dots, \mathcal{D}_K$, loss function ℓ
- Goal: Minimize the worst-case risk

 $\mathcal{R}_{\max}(\theta; P_{train}) = \max_{1 \le k \le K} \mathbb{E}[\ell(\theta; Z) | \mathcal{D}_k]$

• Domain-oblivious setting: $\mathcal{D}_1, \dots, \mathcal{D}_K$ and the value K are unknown during training.

DRO: Distributionally Robust Optimization

- For a given distribution *P*, DRO minimizes a model's expected risk over the worst-case distribution *Q* in a ball w.r.t. some divergence function *D* around *P*.
- Expected DRO Risk of model θ over *P*:

$$\mathcal{R}_{D,\rho}(\theta; P) = \sup_{Q \ll P} \{ \mathbb{E}_Q[\ell(\theta; Z)] : D(Q \parallel P) \le \rho \}$$

CVaR: Conditional Value at Risk

• $D(Q \parallel P) = \sup \log \frac{dQ}{dP}$ $\rho = -\log \alpha$

where $0 < \alpha < 1$

- $\operatorname{CVaR}_{\alpha}(\theta; P) = \sup_{Q \ll P} \left\{ \mathbb{E}_{Q}[\ell(\theta; Z)] : \frac{dQ}{dP} \leq \frac{1}{\alpha} \right\}$
- If $P(\mathcal{D}_k) \ge \alpha$ for all k, then $\mathcal{R}_{\max}(\theta; P) \le CVaR_{\alpha}(\theta; P)$

$$\chi^2$$
-DRO

•
$$D_{\chi^2}(Q \parallel P) = \frac{1}{2} \int \left(\frac{dQ}{dP} - 1\right)^2 dP$$
 $\rho = \frac{1}{2} \left(\frac{1}{\alpha} - 1\right)^2$

•
$$\mathcal{R}_{\max}(\theta; P) \leq \text{CVaR}_{\alpha}(\theta; P) \leq \mathcal{R}_{D_{\chi^2}, \rho}(\theta; P)$$

Worst-case CVaR χ^2 -DRO

Contents

- 1. Background
- 2. DRO is Sensitive to Outliers
- 3. DORO and Theoretical Analysis
- 4. Experiments

Experiment Settings

- COMPAS: Recidivism prediction dataset.
- Subpopulations: White, Others, _____ Note that the subpopulations Male, Female.
 Note that the subpopulations can overlap with each other
- Compare CVaR and χ^2 -DRO with ERM (Empirical Risk Minimization).

Average/Worst-case Accuracy on the Original Dataset

(a) Average (Original)

(b) Worst (Original)

Removing Outliers

- Construct a "clean" dataset by removing possible outliers.
- For 5 rounds, train a model with ERM and remove 200 samples with the highest losses. (1000 removed in total)

(e) Average (Outliers removed)

(f) Worst (Outliers removed)

Flipping Labels

• Add outliers by randomly flipping 20% of the labels in the "clean" dataset.

(g) Average (Labels flipped)

(h) Worst (Labels flipped)

Summary of the Results

- DRO is poor and unstable on the original dataset
- Removing outliers mitigates the problem
- Adding outliers exacerbates the problem
- Conclusion: DRO is sensitive to outliers

Open question from Hashimoto et al., 2018: Is it possible to make DRO robust to outliers?

Hashimoto et al. Fairness without demographics in repeated loss minimization. ICML 2018.

Contents

- 1. Background
- 2. DRO is Sensitive to Outliers
- 3. DORO and Theoretical Analysis
- 4. Experiments

Huber's Contamination Model

- *P*: real data distribution
- The observed data distribution is

$$P_{train} = (1 - \varepsilon)P + \varepsilon \tilde{P}$$

where ε is the noise level, and \tilde{P} is an arbitrary distribution.

DORO: Distributional and

Theoretical Results

- Assumption: ℓ has a bounded second moment over P: $\mathbb{E}_{P}[\ell(\theta; Z)^{2}] \leq \sigma^{2}$
- 1. The minimizer of the DORO risk over P_{train} achieves a DRO risk close to the minimum over P.

2.
$$\mathcal{R}_{\max}(\theta; P) \leq \max \left\{ 3 \text{CVaR}_{\alpha, \varepsilon}(\theta; P_{train}), 3\alpha^{-1}\sigma \sqrt{\frac{\varepsilon}{1-\varepsilon}} \right\}$$

Worst-case
risk over P
 $\text{CVaR-DORO risk}_{\text{over } P_{train}}$
Can be replaced by χ^2 -DORO as it
upper bounds CVaR-DORO

Contents

- 1. Background
- 2. DRO is Sensitive to Outliers
- 3. DORO and Theoretical Analysis
- 4. Experiments

Experimental Results

- Datasets: COMPAS, CelebA, CivilComments-Wilds.
- DORO improves the worstcase accuracy and the training stability of DRO.

CelebA	Method	Average	Worst
	ERM	95.01	53.94
	CVaR	82.83	66.44
	CVaR-DORO	92.91	72.17

Average/Worst-case Accuracy (%) (Average over 10 runs)

CelebA	Method	Average	Worst
	ERM	0.73	8.59
	CVaR	11.53	21.47
	CVaR-DORO	4.03	16.84

Std. Dev. of Average/Worst-case Accuracy across epochs (%) (Average over 10 runs)

Open Question: Model Selection

- We use group labels during validation in our experiments, which should be unknown under the domain-oblivious setting.
- Problem: No known model selection method that makes DRO or DORO significantly better than ERM without group labels.

Thanks

Paper

Code